SERGE Variable Slope Filter (VCFS) Version 1.02

The Random*Source version of the filter is an updated design that uses 2 **high-end THAT2180 VCAs** for superior audio performance and provides **variable Resonance (Q)** to shape overall filter characteristic - both changes have been approved by Serge Tcherepnin.

The Serge Variable Slope Filter consists of a main pcb and a matching component pcb serving as an interface to the front panel.

Main pcb and panel pcb (v1.02 - please refer to the previous version of this document for v < 1.02!):

Please note:

• The 2180 is available in 3 different versions - A being the most selected (and most expensive) while C has slightly lower specifications, B being in between. Each version has far better audio quality than the VCAs in the original circuit, so any differences between A, B or C are neglectible.

- The value of the resonance potentiometer determines the maximum resonance 250k provides a nice slope range, 500k (or even 1Meg) lead to quite drastic resonance behavior when turning Q up. The values of the main board have been adjusted to allow a wider slope range than the original circuit had when slope and Q pots are turned down, the slope should be softer than the original would ever get, while slope turned up plus some Q should lead to a characteristic that's more aggressive than the original at maximum slope.
- The main pcb v 1.02 provides for a BCM847DS (matched transistor pair in SMT) marked T2. This is the only SMT part required to be soldered. It is recommended to solder it first - before populating the resistors, otherwise it's harder to reach.
- The BOM below shows a (fancy) reference build featuring some slightly radical part choices compared to the vintage versions (in particular omitting various capacitors, original values are shown as well) that should work well as long as you also use the (high-end) op-amps specified. Feel free to experiment with other op-amps, but bear in mind that you may have to add capacitors as compensation.
- Pay attention to match the pinouts of the transistor Q2 to the markings on the board (Collector / Base / Emitter)! The direction of the transistor will depend on which type you use (check the datasheet!).
- Orientation of the main pcb: **power header is at the bottom** (when looking at the module upright, e.g. in a rack).
- Board is designed to be powered by a +/-12V stabilized PSU only (+/-15V is untested/unsupported and will require some value changes to not kill the THAT2180s).

Bill of Materials

The following resistor values are suggestions - for a number of resistors, which determine key characteristics of the filter, ther values should be adjusted according to need/taste. The values stated here should be understood as a starting point rather than the "correct value" (this is DIY!).

Resistor	s (1%)		
2	BEAD / 10R	F1, F2	FERRIT BEAD
3	330R	R1, R7, R8	
1	390R	R25	
2	475R	R16, R17	
1	820R	R12	
1	4k32	R28	or 4k02
2	4K7	R38, R39	(*increase to 5k1 in case of a +/-15V power supply - unsupported!)
2	6.8k	R18, R19	
1	10k	R24	
2	15k	R21, R26	
4	22k	R13, R15, R34, R35	
2	22k	RM1*, RM2*	*on component pcb!
2	33k	R14, R22	
1	36k	R20	use 36k for increased slope range
			(if you feel that is insufficient, lower to 33k or even to 28k

Capacito	OMIT (15nE)	65 66	Original decign:
Concelto			
			of the 1V/Oct input.
1	10K	T1 (1V/0CT)	Trimpot (S64YW or anything that fits) to adjust the tracking
2	1M	R23, R31	
1	470k	R30	
4	330k	R11, R27, R32, R33	
1 (4)	220k	R29	(4 if you use them for R2m R3, R6 as well)
			or zzok reads to a fairly high output level (i.e. more distorti-
9	IZUK	12,113,110	of 200k loade to a fairly high output lovel /i a more distorti
2	100K	NJO D2 D2 D6	to bring the output level down to unity gain - original value
3	100k	n4, n3 D26	
2	02K	N37 D4 D5	control input lovel - increase to 200k if peeded
1	00k	D27	on component pcb:
- 1	26k	DAE*	*on companent nchl
2	47k	R9. R10	

-		00,00	original acolyn.
			15pF or 10pF Mica - install COG if needed
2	220pF	C7, C8	Styrene/Styroflex - match for best performance
1	OMIT (270pF)	C9	Original design: 270pF
			Alt: 220pF, Mica or COG or Styrene
10	100n	C3, C4, C11, C12, C13, C14, C15, C16,	Bypass caps
		C17, C18	
1	470n (Film)	C10	
2	10uF	C1, C2	Electrolytic

ICs

1	BCM847DS	T2	SMT
1	2N3904	Q2	
1	OPA2227 or	IC2	Burr-Brown dual op-amp
	OPA2134		
2	OPA2134	IC1, IC3, IC4, IC5	Burr-Brown dual op-amp
2	THAT2180	ICG1, ICG2	THAT2180B (or THAT2180A or C)
3	1N4148	D1, D2, D3	

Misc

1	Jumper	JP1	JUMPER - leave open - (closing makes Q-pot
			useless)
1	MTA-156		MTA-156 power connector
2	SIL header 10pol		10-pin connector, links main pcb to component
			pcb

0	Banana Jacks	TRIG IN (red)	Emerson-Johnson
			Mouser: 530-108-0902-1 (red) or Thonk
5	Banana Jacks	IN, BIPOLAR (black)	Emerson-Johnson
			Thonk / Mouser: 530-108-0903-1 (black)
3	Banana Jacks	CV / unipolar (blue or white)	Emerson-Johnson
			Thonk / Mouser: 530-108-0910-1 (blue),
			530-108-0901-1 (white)
5	Potentionmeter	linear (B50K or B100K)	Alpha 9mm vertical pcb mount
	50k or 100k		available from Thonk, Tayda
1	Potentionmeter	linear (B250K or B500K)	Resonance (Q) - see text!
	250k (or 500k)		Alpha 9mm vertical pcb mount
			available from Thonk, Tayda

Building

This is simply a suggestion - you might find a different workflow more practical:

- 1. Mount the Banana jacks, and the switch onto the front panel.
- 2. Screw (10mm) spacers to the panel pcb if desired this is easiest done while the panel pcb is not yet attached to the front panel.
- 3. Main pcb and panel pcb are to be connected through precision DIP socket and pins. It is recommended to use the pins on the main pcb (facing down, soldered from above) and the pin sockets on the panel pcb (standing up, soldered from the front panel side). Break or cut off the pieces you need and stick them together so that main pcb and component pcb form a nice sandwich (don't solder yet). Check that you didn't leave out any pins / holes and that the sockets are all on the same side (panel pcb). Also make sure the pcbs have the right orientation (so that the pots will sit outside!). Solder all the pins in while keeping the sandwich together this avoids any misalignments.
- 4. Carefully separate the sandwich if you used precision sockets, this may not to too easy they stick together nicely (giving a good connection).
- 5. Solder the resistors onto the panel pcb.
- 6. Mount the pots onto the component pcb. Pots should sit on the printed side this side faces the front panel. Don't solder them in yet.
- 7. Carefully mount component pcb (with the pots inserted) onto the front panel. You may then have to wiggle each pot a bit to get the pots through. Make sure the threads of the pots go through completely and the pots sit right at the front panel. You can even screw the pots to the panel to make sure of that, but you have to unscrew them again later (for Step 5).

Serge VCFS

8. Solder the banana jacks in. You can either solder them directly to the surrounding vias (rings around) or - which makes removing easier should you ever need to do that - by inserting a stiff (bare) wire into the little hole (via) and solder that wire to the top of the banana jack:

- 9. Solder the SMT part (BCM847DS) onto the main board. Using thin (0.5mm) solder wire recommended.
- 10. Stuff the main board, beginning with the resistors, then caps etc.
- 11. Attach any screws / spacers if desired and mount the main pcb onto the component pcb.
- 12. Connect a power cord supplying +12V, GND, GND, -12V to the MTA-header on the main board and you should be ready to go :-)

Calibration

The main pcb provides a single trimpot that allows adjusting the **1V/Oct** input. As the filter does not self oscillate by design, calibrating the 1V/Oct tracking precisely is tricky and probably not too relevant. Also, be aware that this input has no temperature compensation. The best way might be to simply do this by ear.

(Version 11 January 2017)

SERGE Modular by Random*Source. Module and circuit under license from Serge Tcherepnin. All rights reserved.